If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-19X-88=0
a = 1; b = -19; c = -88;
Δ = b2-4ac
Δ = -192-4·1·(-88)
Δ = 713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{713}}{2*1}=\frac{19-\sqrt{713}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{713}}{2*1}=\frac{19+\sqrt{713}}{2} $
| 5.4d-2.3d+(d-4)=16.67 | | (y-8)/3=11 | | 2(0)+6y=4 | | 23-2x=14-x | | x+26=0 | | 15(x+1)=15x+5 | | 6x+7x+3+9x-8+8x-11=149 | | 998x=8)=576 | | 3/18x=18 | | (x/6)-4=5/12 | | 4(0)+2y=16 | | -4b=-6b-6 | | -174=-6x+6(-3x+19) | | (x+1)/6=4/5 | | 60+x=120 | | 5+15x=15x+5 | | 4x+2(0)=16 | | k^+13k+42=0 | | 4(3x+6)=-72 | | X-1=-3x+27 | | -x^2-1x+24=0 | | 8.6=j+4j | | 6(x+3=2(2x+5) | | -6=-6(2x+5) | | (0)-y=8 | | 2(x+4)=-4(x+10 | | |4-9x|=68 | | 2x+2(0)=16 | | (9x-5)(2x+7)=0 | | (4x-5)^2=-49 | | 7x-8(2+3x)=1 | | 2x/3+11=x+21 |